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Abstract. This work describes several physical models of the mechanical properties of rocks
resulting in macroscopic nonlinear behavior due to their mesoscopic-scale structure. Theoret-
ical models include Hertzian grain contacts with multiple scales and hysteretic properties. A
significant addition to the highly nonlinear response in these materials are fluids contained in
the soft bond system.

INTRODUCTION

The nonlinear response of earth materials is an extremely rich topic, one that has
broad implications in earthquake engineering, nondestructive testing and material sci-
ence (e. g., [7]). The mechanical properties of rocks appear to be a part of a broader class,
one we call the Nonlinear Mesoscopic Elasticity, or Structural Nonlinear Elasticity class.
Mesoscopic materials can be thought of as composed of a hard matrix material (grains,
crystals) containing soft features (the bond system, cracks) that lead to a very large non-
linear response, including hysteresis and relaxation (slow dynamics). It is also becoming
clear that water in the bond system contributes significantly to the nonlinear response in
these materials; however, exactly how the bond system and fluids contribute to the non-
linear response is not yet well understood. Here we discuss possible mechanisms of non-
linearity in rock based on observations.

Acoustic nonlinearity may manifest itself in a variety of manners, including nonlinear
attenuation, resonant frequency shift, harmonic and subharmonic generation, and slow
dynamics. Most quantitative measurements have been performed using resonant bar ex-
periments. Due to the resonance amplification, it is perhaps the most sensitive manner
by which to observe nonlinear behavior, even at dynamic strains as small as 8 = 10~9 (in
one dimension, e = du/dx where u is the displacement). The quantitative indicators of
nonlinear behavior from dynamic (vibroacoustic) experiments are the amplitudes of wave
harmonics, amplitudes of wave cross-modulation, resonance frequency shift, amplitude-
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dependent loss, and their respective scalings with strain amplitude. Here we focus on de-
veloping models that may predict scaling relations derived from resonance experiments.

Examples of these results are numerous. The data illustrate that, first, the nonlinear re-
sponses in rocks are large and second, that the nonlinear dependencies can be different
from those of classical, atomic elastic media. Thus, the frequency shift is often propor-
tional to the strain amplitude 80 rather than to £Q as for the classical "cubic" nonlinearity,
and the third harmonic amplitude is proportional to £Q, not EQ. This implies that the stress-
strain dependence a(e) in rocks cannot ordinarily be described by a standard Taylor series
expansion of the stress-strain relation. In these cases, nonclassical behavior must be ap-
pealed to.

THEORETICAL MODELS FOR STRONG ELASTIC
NONLINEARITY

The theoretical models of medium nonlinearity from the traditional elasticity theory
are based on application of expansions of the strain energy function or stress-strain equa-
tion of state keeping low-order (quadratic and/or cubic) nonlinear terms. From the energy
expansion in the classical case, a similar series for stress-strain relation can be written:

(1)

where M is the elastic modulus, and P and 8 are nonlinear coefficients that can be ex-
pressed in terms of Landau or Murnaghan moduli. Although this relation has been ob-
served in some experiments with rocks, it is relatively rare. More often than not, the non-
classical behavior mentioned above is observed. This behavior cannot be described by
the above equation. Further, the values of nonlinear coefficients are typically orders of
magnitude larger than those due to atomic nonlinearity. To explain these facts, one must
appeal to more general models of static and dynamic behavior of rock, which include
non-analytical stress-strain dependencies.

Hertzian Contacts

A relevant starting model of nonlinearity in rock is based on representing the rock as
a system of dry, contacting grains (e. g., [2]) (Fig. 1).

These contacts are much softer than the matrix material, and therefore play the primary
role in nonlinear elastic response of the medium. In this model, the distance change A
between the grain centers is related to the compressive force, F^ by the Hertzian contact
law [3],

A = I ,^1/0 h } » (2)
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FIGURE 1. An aggregate of contacting grains.

where E is the Young's modulus of the material, v is Poisson's ratio, and R is the grain
radius.

For a dry medium composed of identical spheres this yields the following one-
dimensional stress-strain relation

n(l-a)E 3/2
37i(l-v2)£ ' (3)

where a is effective stress, n is the average number of contacts per grain and a is the frac-
tion of empty (porous) space per unit volume. For a random packing of unconsolidated
grains, n = 8.84 and a — 0.392 (which may not be applicable to rock).

It is evident that the contact contribution to the sound speed, c = (p~l da/de)1/2, tends
to zero at small positive strains (negative strain means that grains just separate, and there
are no contact forces at all). However, dc/de which is a measure of nonlinearity, goes to
infinity. In real experiments the aggregate is subject to a static pressure creating a con-
stant pre-strain 80, and for small one-dimensional perturbations, we can expand a into the
series (1), where the modulus is

M =_ n(l-a)E 1/2
271(1-'

£0

and the quadratic and cubic nonlinearity coefficients are

(4)

(5)

Some interesting properties of granular materials follow from the above equation of
state: in particular, the nonlinearity parameters (5) do not depend either on grain size or
composition, but strictly on the pre-strain, i. e. on static pressure; that implies that the
larger the overburden, the smaller is the material nonlinearity which is in line with obser-
vation [4].

77

Downloaded 03 Feb 2005 to 128.165.0.70. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



FIGURE 2. Granular medium with two-scale contacts.

Multiscale Contact Structure

The above results were experimentally verified in laboratory experiments using uncon-
solidated grains. In its simplest version, however, this model is insufficient for rock: it
does not include stress-strain hysteretic effects. On the other hand, this model admits
many effective extensions. One of them, under present consideration, deals with small-
scale multicontact interfaces between grains which yields localized regions of nonlinear-
ity (similar to the "bed of nails" model for a crack considered in [5]). Indeed, there is
evidence that the stress path in these materials may not be homogeneous [7]. The follow-
ing model includes two sizes of contacts. In an attempt to more closely approximate the
actual structure, we consider large grains in the form of polyhedrons of a mean size R and
surface S, separated by thin, rough contact layers of thickness 2R (Fig. 2).

The rough portion of the contact layers are hemispheres of radius r<^R which take a
share s of the surface S, and the remaining space between grains is locked or empty. The
volume change of the different structural elements under a given forcing (via the change
of elastic energy) is

a = 0m + 0e^, (6)

where 8VC/8>V is the relative volume change due to the contacts, and aw is the strain due
to cemented contacts. For am we have am = Me, where M — pc2 (p is density and c is
the linear sound speed). The last term in Eq. (6) corresponds to the Hertzian relation for
the force Fh between two small contacting spheres,

A3/l

The total volume change per grain of volume Vg is AV = &SA, where b = 1 for bulk com-
pression and b = 1/3 for longitudinal strain [2]. The change of contact volume, AVC, is
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, and its contribution to strain, GC = Fh/nr2. As a result we have

For example, for cubic grains with displacement a (e.g., 8 = A/a), E = 1011 dyn/cm2,
p = 2 g/cm3, and c — 2 • 105 cm/s, we have

a- (pc2)e+ (0.6- 1011) (3s) (-} e3/2, (8)

not uncharacteristic of some rocks.
Comparison of the nonlinear part of Eq. (8) with Eq. (3) shows that the nonlinearity in

the former formula acquires (R/r)3'2 which can dramatically enhance the nonlinearity.
For the experiments with sandstone, the values R ~ 100 mem and r ~ 0.5 mem seem to
be realistic and sufficient to explain the experimental resonance frequency shift. In real
rock, a more complicated, fractal structure exists, so ultimately this model must be mod-
ified [6,7].

The Role oflntergrain Fluids

There exists much evidence that the presence of fluids, particularly at very small de-
grees of saturation, affects linear properties of rocks (sound speed, dissipation), where it
has been suggested that the monolayer and capillary forces may be responsible (e. g., [4]).
Recent experiments conducted by B. Zinszner and P. Johnson (unpublished) indicate that
the nonlinear response can change significantly with water saturation as well. Figure 3
shows resonance frequency shifts for Meule sandstone, conducted at water saturations
ranging from 1-95%. The nonlinear response, as measured by the change in resonance
frequency versus strain, shows nearly an order of magnitude increase from 1 to 30% sat-
uration. From 40-95% saturation, the response remains approximately the same. Hence,
nonlinear experiments at varying water saturation in sandstone and limestone show even
stronger dependencies on saturation than do the linear wave speed and dissipation.

In the following we briefly discuss models of wet Hertzian contacts that contain a phys-
ical basis related to the discussion above.

A simplest case is that of a 100% filling of the intergrain space (100% saturation) [2].
In this case, the fluid acts as an additional elasticity to that of the grain contacts. The
resulting stress-strain relation (neglecting atomic fluid nonlinearity) has the form,

Kf n(l-a)Es */2— _____ J- ———— -— - — — —-'

where Kf and Ks are the bulk modulus of the fluid and solid phase, respectively, and a is
the porosity. The above equation illustrates that the effect of pore fluids is to decrease the
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FIGURE 3. Nonlinear response of Meule sandstone under varying saturation conditions.

nonlinearity and increase sound velocity by adding fluid rigidity to that of the solid. The
latter effect is, indeed, typically observed for large saturations.

As mentioned, in smaller volume ratios the fluid can, on the contrary, increase the
medium nonlinearity. The attempts to describe this effect are associated with capillary
and Van-der Waals forces arising at thin contacts between grains. There exists a bulk of
literature describing elastic forces arising at thin wet contacts between grains (e. g., [8]).

To estimate the nonlinearity due to fluids, we considered capillary and Van-der Waals
forces. In the simple case of a contact between two spheres of equal radii R under precom-
pression where fluid is concentrated between flat surfaces (Fig. 4), the attractive capillary
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FIGURE 4. Hertzian contacts containing water.

force between them is
_ 2Vycose

where V is the volume of fluid between grains, y is the surface tension coefficient, © is
the angle between surfaces of fluid and solid, D is the equilibrium thickness of the fluid
layer, and h is due to external (acoustic) stress.

Considering the change of these parameters due to acoustic deformation at a fixed fluid
volume and averaging over the bulk of the material, we find the contribution of capillary
forces to the stress-strain relation,

2VYCOS6
°c-n&Di(l + 2£R/D)' ( }

This stress must be added to the Hertzian stress considered above. It is seen from here
that: (i) The presence of fluid decreases the linear elastic modulus, K(z) = da/de [hence,
the sound velocity - the stronger the larger the saturation (V)]; (ii) K increases for posi-
tive strain; and (iii) negative cubic nonlinearity results from the expansion of ^T(e), and,
consequently, causes an additional nonlinear shift of resonance frequency in a resonant
bar. The first and the third properties agree with the experimental data.

We note that a similar problem was recently considered by Nazarov for cracks. He also
discussed viscous motion of fluid (with small Reynolds numbers) [9] and concluded that
it can provide much stronger nonlinearity than in the case of an ideal fluid.

The other important case is that of very thin fluid layers between grains, of order a few
or a few tens of molecular monolayers (i. e., before capillary condensation takes place).
In this case, the dipole Van-der Waals force plays an important role. For a flat contact,
this force can be shown to be,

where again, D is the thickness of the gap, and A is the Hamaker constant (of order 10~13-
10~14 erg for water). This effect should also be combined with the Hertzian force.

It should be noted that elasticity of fluid films can be hysteretic (due to different values
of G for the motions back and forth in Eq. (10) [8]) and also can provide log time relax-
ation of parameters that is seen in experiment [10]. This is subject of intense research
currently.
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Models with Hysteresis

Although dynamical hysteresis in metals was observed long ago, for rocks this is a rel-
atively new topic (see [7] and references therein). An adequate equation of state must
include the dependence on the history of the process which can be characterized, in the
quasistatic case, by the sign of e:

)], (13)

where A is a functional describing all "nonclassical" effects. A specific form of A should,
strictly speaking, follow from a consideration of the mesoscopic structure of the mater-
ial. At present, however, only phenomenological representations exist. Some empirical
models were suggested for metals, rocks and sand. A more sophisticated and physically
suggestive phenomenological model, called the Preisach-Mayergoyz (P-M) space model,
that successfully links dynamic and static nonlinearity, and includes hysteretic nonlinear
behavior of rock elasticity with discrete memory, was developed in a series of papers by
our colleagues (e. g., [11,7]). The P-M space model is based on assuming that the elas-
tic properties of a macroscopic sample of material result from the integral response of a
large number of individual elastic elements, some of which are hysteretic. The individ-
ual elements are combined for analysis in what is known as P-M space (also referred to
as Preisach space). This model has been very successful in describing many static and
dynamic features of the rocks noted above (high nonlinearity, hysteresis, discrete mem-
ory). However, it is still of a phenomenological nature and as such it lacks a connection
with the underlying physics.

A physical model of hysteretic elasticity was suggested by Granato and Liicke (below
G-L), as early as in 1956 for metals [12]. They applied an idea developed even earlier,
using an analogy between a segment of a dislocation line pinned to impurity particles,
and the motion of a string. These dislocations contribute to the volumetric elastic de-
formation. As the stress increases (they considered primarily shear stress), dislocations
deform like pieces of a string until, at some critical stress, they are disconnected from
all impurity atoms between the nodes of a crystalline structure. As a result, the material
becomes softer, which means a strong volumetric nonlinearity in the stress-strain depen-
dence (Fig. 5). This process is irreversible. Upon reducing stress, the system returns to
a relaxed energy state but along a different energy trajectory. Hence, a typical hysteretic
loop is formed. It also implies a slow dynamical effect, because the pinnings are restored
to energy equilibrium over some time. The distances between the sticking points are sta-
tistically distributed, which smooths the hysteretic loop (Fig. 5, dashed line). This model
has been developed in many manners (including frequency dependence). In spite of some
disadvantages, this was a pioneering micromodel for hysteretic dynamic behavior of elas-
ticity.

We used a model of G-L elements uniformly distributed in their loop sizes in finite lim-
its, found the shear stress, and calculated the integral of the stress-strain loop supposing
that the distribution is uniform. The result is

(14)
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FIGURE 5. Stress-strain dependencies for the Granato-Liicke model.

where em is the strain amplitude, Q is a constant depending on the parameters of the hys-
teretic elements, and ± corresponds to the sign of dz/dt (i. e., a branch in the hysteretic
loop). This expression is essentially the same as that following from the aforementioned
P-M space model for a uniform distribution of rectangular elements. It should be noted,
however, that in the G-M model for metals, a non-uniform (exponential) distribution of
elements is used leading to a different shape of the hysteretic loop, albeit with similar
qualitative characteristics.

A variation of the G-L model was considered by Asano [13]. It permits a contact to
slide within some limits (a "slider") rather that to be detached as in the G-L model (a
"ratchet"). The corresponding hysteretic loop will surround the zero stress-strain point
rather than including it. This model can also give a dependence of the type (14). This
study is in progress.

For rock, the role of dislocations is not clear. Certainly in amorphous bond material
such as silica (typical of many sedimentary rocks), dislocations cannot be appealed to.
In solids, however, where crystalline material bonds the system, e. g. calcite, disloca-
tions may be present. In any case, based on energy arguments, the scale of the dislocation
mechanism is the correct scale for the mechanism of nonlinear response (e. g. [10]).

CONCLUSIONS

The above models of mesoscopic nonlinearity can be considered as basic for the de-
scription of nonlinear acoustic properties of rocks and other consolidated granular ma-
terials. They permit an explanation of strong nonlinearity and also some non-classical
dependencies observed in experiments. At the same time, reality is still much more com-
plicated. The physical theory of mesoscopic nonlinearity in real materials is a work in
progress.
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